Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane.

نویسندگان

  • Nima Khatibzadeh
  • Sharad Gupta
  • Brenda Farrell
  • William E Brownell
  • Bahman Anvari
چکیده

In this study, we investigated the effects of membrane cholesterol content on the mechanical properties of cell membranes by using optical tweezers. We pulled membrane tethers from human embryonic kidney cells using single and multi-speed protocols, and obtained time-resolved tether forces. We quantified various mechanical characteristics including the tether equilibrium force, bending modulus, effective membrane viscosity, and plasma membrane-cytoskeleton adhesion energy, and correlated them to the membrane cholesterol level. Decreases in cholesterol concentration were associated with increases in the tether equilibrium force, tether stiffness, and adhesion energy. Tether diameter and effective viscosity increased with increasing cholesterol levels. Disruption of cytoskeletal F-actin significantly changed the tether diameters in both non-cholesterol and cholesterol-manipulated cells, while the effective membrane viscosity was unaffected by F-actin disruption. The findings are relevant to inner ear function where cochlear amplification is altered by changes in membrane cholesterol content.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of gas separation properties of polyurethane membrane using plasma grafting

In recent years, plasma treatments have given good results since they offer high technological efficiency with low waste generation. One of the most important characteristics of plasma methods is their action only on a thin surface layer, whereas the bulk of sample remains unchanged and the modified material keeps its chemical and mechanical properties. In this research, polyurethane membrane s...

متن کامل

Effect of relative humidity on mechanical strength of zirconia/ Nafion® Nano-composite membrane

This paper presents the results of mechanical strength of wet and dry zirconia/ Nafion® nano-composite membrane. The tensile tests were conducted to determine elastic modulus and stiffness of dry and wet pristine Nafion® membrane and modified Nafion® membrane. The composite membranes were prepared by recast method of different synthesized zirconium oxide with the zirconia content of 10% by weig...

متن کامل

In vitro evaluation of decontamination effects on mechanical properties of fibrin membrane

Background: Tissue engineering has been investigated as a potential method for healing traumatized tissues. Biomaterials are material devices or implants used to repair or replace native body tissues and organs. The present study was conducted to evaluate the effects of decontamination methods on biological/mechanical properties and degradation/adhesion test of the platelet‑-rich fibrin (PRF) m...

متن کامل

Effects of Plasma Membrane Cholesterol Level and Cytoskeleton F-Actin on Cell Protrusion Mechanics

Protrusions are deformations that form at the surface of living cells during biological activities such as cell migration. Using combined optical tweezers and fluorescent microscopy, we quantified the mechanical properties of protrusions in adherent human embryonic kidney cells in response to application of an external force at the cell surface. The mechanical properties of protrusions were ana...

متن کامل

An alarming biochemical side effect of Teucrium polium on the plasma membrane alkaline phosphatase of k562 cell line

The unexpected enhancement of alkalinee phosphatase (ALP) activity in the serum of a group of STZ-diabetic rats recieving the Teucrium polium extract (with hypoglycaemic property) may be attributed to its probable side effects. In order to get a more precise knowledge about this subject, we evaluated the effect of T. polium extract on the plasma membrane ALP activity of K562 cell line. Our data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft matter

دوره 8 32  شماره 

صفحات  -

تاریخ انتشار 2012